Prestressed Concrete Bridge Design Seminar

Session 1 – April 13, 2021

1. Basic Concepts of **Prestressed Concrete**

Reid W. Castrodale, PhD, PE

Castrodale Engineering Consultants, PC – Concord, NC

Structural engineering consultant - Prestressed concrete, LWC, and ABC

39 years bridge experience in design, research, promotion, & specifications

- Previously Portland Cement Assn. (PCA), Ralph Whitehead Assoc. (STV), & Carolina Stalite (LWA)
- Georgia/Carolinas PCI Bridge Consultant (> 20 yrs)
- Managing Technical Editor of ASPIRE® magazine
 Director of Engineering ESCSI & Stalite
- Consultant on 3 NCHRP research project teams: 0.7" strand; deck girders; & stainless steel strands

Chair, PCI Committee on Bridges (COB) (1992-1998)

Co-Chair, PCI Bridge Design Manual Steering Committee (1993-2011)

Principal Investigator for NCHRP Report 517 "Extending Span Ranges of PC PS Concrete Girders"

Education

Georgia Institute of Technology, BCE

University of Texas at Austin, MS & PhD in Structural Engineering

reid.castrodale@castrodaleengineering.com (704) 904-7999

2

Why use Prestressed Concrete?

"Transforms" concrete from a material that cracks into an elastic uncracked material at service limit state

- Prevents concrete cracking at service limit state
- Gross cross-section maintained for improved stiffness
- Provides active force to close flexural cracks
- Prestress force balances loads

An ideal combination for bridges

- Allows longer and/or shallower spans
- Improves durability

Adaptable to many design situations

Prestressed Concrete

High strength steel is pre-tensioned (i.e., prestressed) to pre-compress concrete to counteract tensile stresses and cracking at service limit state Prestressing "balances" the applied loads

4

Prestressed Concrete

Prestressed (PS) concrete combines

- High performance concrete
- High strength steel

High strength prestressing steel is required to overcome strains from elastic shortening, creep, & shrinkage and still have significant stress

5

Prestressed Concrete

Prestressed (PS) concrete combines

- High performance concrete
- High strength steel

High strength prestressing steel is required to overcome strains from elastic shortening, creep, & shrinkage and still have significant stress

Mild reinforcement is not effective for prestressing – not enough strain capacity to overcome other strains

Post-tensioning

One method for applying prestress to concrete

- Ducts cast into concrete (CIP or precast)
- Strands are tensioned against hardened concrete member
- Permanent anchorage hardware is used to transfer force to concrete
- After stressing, duct is typically grouted for bond and corrosion protection

Many figures in this session are from the <u>PCI Bridge Design Manual</u>

7

Pretensioning

Second method for applying prestress to concrete

- Strands are tensioned between abutments, then concrete is placed
- When concrete reaches required strength, force is transferred from strands to concrete
- Force is transferred to concrete by bond only there is no permanent anchorage hardware

8

Prestressing Strand

- Figure 4.5.4 Section 1.5.4 Sec
- 7-wire strands are standard
- 0.6 in. diam. strand is typical
- 0.7 in. diam. strand is being studied
- Also stainless steel, carbon fiber, and epoxy coated for corrosion resistance
- Grade 270 strands are standard
- 270 ksi ultimate tensile strength (GUTS)
- No defined yield point use 0.2% offset: f_{py} = 243 ksi
- Grade 300 strands now available

10

Pretensioned Concrete Beams No tendon anchor hardware – anchorage by bond only The state of th

11

At Service Limit State Conditions - Reinforced Concrete: Cracked section Reduced stiffness - Prestressed Concrete: Uncracked section Gross section stiffness At Strength Limit State Conditions - Reinforced Concrete: Reinforcement yields - Prestressed Concrete: Strands are past yield, nearing strength - Concrete stress block is the same for either

Benefits of Prestressed Concrete

- Structural Efficiency
- Cost Effectiveness
- Durability crack control and high quality precast concrete
- Low Maintenance
- Quality PCI certified
- Standardization
- Aesthetics
- Accelerated Bridge Construction (ABC)
- Fire Performance
- Proven Track Record

13

History of Prestressed Concrete in US

Introduced in 1949

- Walnut Lane Memorial Bridge in Philadelphia, PA
- An innovative bridge
- Girders precast on-site
- Post-tensioned using wires
- 160 ft main span
- Sparked the emergence of prestressed concrete in the US
- Bridge was replaced in 1990
- See articles in PCI Journal, especially May-June 1992

14

Growth of the Industry

Rapid development of technology and materials in 1950s

- Seven-wire strand
- Plant pretensioning in long-line beds
- Chemical admixtures
- High-early strength concrete
- Steam curing

By 1958, there were more than 200 prestressing plants in the $\ensuremath{\text{US}}$

Growth of the Industry

Design standards continued to evolve and develop

Industry recognized need to focus on quality

PCI's Plant Certification program was developed

- In place since 1967
- Assures specifiers that plants have processes and capability to consistently produce quality products
- Certification programs are also in place for plant personnel

Many DOTs require PCI Certification for prestressed concrete products

16

Quality Control

Quality is controlled during production at precasting plant

- Rigorous inspections
- Product is inspected at each stage of fabrication to provide quality control
- PS concrete members are essentially load-tested at transfer of PS, giving an indication of quality

17

Growth in Use of PS Concrete Bridges

Current preference for prestressed concrete is revealed in NBI data (2013) for total inventory (all states)

- Nearly half of the number of new bridges built each year are PS concrete from none in 1950
- PS concrete is only superstructure material with growth since 1950

Using the FHWA InfoBridge Portal, 46% of bridges constructed in most recent 5 yr period were PS concrete

- Consistent with earlier data

PS Concrete Bridge Performance Number of structurally deficient bridges of equal ages - Based on superstructure material using NBI data Percent of Struct. Deficient Bridges (Count) in NBI Classified by Superstructure Material - 2015 Data 35% Superstructure material Count is a significant factor in 25% performance PS concrete has fewest 15% no. of structurally 10% 5% deficient bridges

19

PCI Bridge Design Manual

Source of much of the information presented today Design-related content

- Design procedures and details with background
- Design aids
- Detailed design examples
- Discussion of different applications

Fabrication and Erection – Chapter 3

- HIGHLY RECOMMENDED - detailed discussion

Now <u>FREE</u> from PCI online bookstore!

20

Prestressed Concrete Bridge Design Seminar

Session 1 - April 13, 2021

1. Introduction to Prestressed Concrete

Questions?

