Prestressed Concrete Bridge Design Seminar

Session 1 – April 13, 2021

2a. Fabrication of **Prestressed Concrete Girders**

Overview

Economical fabrication depends on economical design and detailing

- Process and details of fabrication
- Design considerations (later presentations)

Much info from PCI Bridge Design Manual

- Chapter 2 Material Properties
- Chapter 3 Fabrication and Construction
- Chapter 4 Strategies for Economy

Many fabrication details are possible – a few examples are shown

2

Prestress Plants

Materials

Prestressing strand
Mild reinforcement
Concrete

4

Prestressing Strand

Prestressing strand
ASTM A416 Grade 270

Strand shipped in coils

Pretensioned strands and post-tensioning anchorages, spirals and ducts

Pretensioning and post-tensioning can be combined as shown here

5

Mild Reinforcement Frestressing Frestressing Batton Fierge Frestressing Frestress

Concrete

Conventional methods for proportioning and mixing concrete

- High strength mixes up to 10 ksi at 28 days
- High flow mixes to move through congested reinforcement
- Rapid strength gain so girders can be removed from the beds quickly

Aggregate conveyer

Batch plant discharge

7

Fabrication

Forms

Casting beds

Strands – straight & harped

Tensioning & ducts

Embedments

Casting operations

8

Forms

External

- Side forms
- Soffit
- End headers
- Adjustable forms
- Internal void forms
- Self stressing bed

Internal

- Stay-in-place
- Removable

End Forms

Headers are usually fabricated of steel to allow reuse

- Avoid modifying strand patterns
- Slotted for draping strands
- Wood may be used if modifications are required

Bulb-tee end form Modification required (header) for skewed ends

13

Stay-In-Place Internal Forms

Waxed cardboard void forms for cored slab

Voided slab form

Polystyrene foam billet for trapezoidal box beam – also for conventional box beams

14

Removable Internal Forms

Placing expanded form for RR box beam

Removing retracted void form

Prestressing Bed The structure that resists the pretensioning force on the strands Abutment type bed − most common - Abutments are typically fixed in foundation - Slab may be used as strut between abutments - Typical bed length: 300 − 500 ft long; can be ≤ 200 ft | Huped Strands | Pan (Benom Form | Pan (Benom

Raised structural elements resist forces Pile sections used as struts Strands are in top flange for haunched pier segments of spliced girder bridges - Struts provide reaction for strands anchored at level of strut

19

Strand Anchor Plates

Anchor plates span between abutments – major structural elements

- Strand pattern is set 2 in. x 2 in. grid is standard
- Assembly can usually be raised or lowered as needed

20

Strand Anchor Plates

Self-stressing piling form

- Strand pattern is set using heavy end plates
- NEXT Beam is similar

readings must agree within 5%

Elongation for 500 ft bed is 42.6"; 25.6" for a 300 ft bed

23

on pump

Example of internal plate hold up device Crane lift point In raised position with pin to fix elevation In raised position In raised position

29

Stressing Strands

All strands are tensioned in 2 steps

- Initial tension of 2000 to 4000 lbs, depending on bed length
 - Removes slack and seats dead end chuck
 - Provides reliable starting point for QC readings
- Remaining stress is then applied to full tension
 - For Grade 270 0.6-in.-diam. strands = 43.9 kips
- Corrections may be needed for abutment movement, chuck seating, and temperature

Draped strands will have different forces or elongations from straight strands, adding complexity to stressing operations $\,$

Debonding

Plastic sleeve or tubing prevents bond between strand and concrete

- Option for stress control at ends of girders instead of draping
- Preferred over draping by most fabricators
- May also be used for top strands in center portion of girder

Installation

- Must access strands to place and seal with tape
- Not all strands are easily accessible
- Ends of sleeves sealed to prevent entry of concrete

3

31

Debonding

Material

- Two-piece snap together sleeves
 - Easy to use
- Solid tube
 - Placed on strand as installed in bed
 - Not as easy to install
- Split sleeve (not allowed by some DOTs)
 - Has to be taped for full length to prevent concrete from entering sleeve

- Ends of all types of sheath must be sealed
- If sheath is not continuous, joints must also be taped

32

Debonding Considerations

For economical design, engineers need to understand how girders are manufactured in a plant

- Provide minimum debond length required by design to control stresses
- Stagger terminations of debonding to avoid potential cracking
- Consider access when selecting debonded strands
 - Workers must access strands to apply and seal debonding
 - Special attention may be required for NEXT beams where side forms are fixed and strands can only be accessed from above
 - Discuss with local fabricators

Quality Control

Bed setup

Cross-section

Stirrup spacing

35

Quality Control

Mix development & concrete testing

Slump test

Concrete strength testing

Concrete Delivery and Placement

Concrete delivered to and placed in forms

- Various methods used
- Units shown do not agitate the concrete, which is delivered by auger

Concrete delivery

Concrete placement

37

Concrete Delivery and Placement

Vibration is typically used to consolidate concrete

Self-consolidating concrete (SCC) or high slump concrete is often used

Facilitates placement, promotes good consolidation, and reduces vibration requirements

Internal vibration

External (form) vibration

38

Top Flange Finishes

Typically the top flange receives a raked finish with minimum amplitude of % in. for composite behavior

May be partial width if partial depth prestressed deck panels are used

Curing

Curing is important

- Forms are typically covered to retain temperature and moisture Accelerated (elevated temperature or steam) curing may be used

Curing tarps are used to retain heat for initial curing

Theoretical time-temperature curve for accelerated curing

40

Detensioning

Initial concrete strength, $\overline{f_{ci}}$, must be achieved before detensioning

Tarps and side forms are removed

Single strand detensioning

- Workers simultaneously detension each strand according to pattern in shop drawings
- Strands are heated with a torch until wires relax and break they are not cut
- Specified procedure and pattern
- Hold downs must be released to avoid damage as girders shorten and camber

41

Detensioning

Gang detensioning

- Repressurize rams
- Release hardware holding load, then depressurize rams
- Girders will move down bed as they are detensioned
- Since girders move, hold downs must be released to avoid damage
 - May lead to high stresses in girders before strands are detensioned
 - If so, may require additional reinforcement or other measures

Detensioning

Girders camber up and the ends slide on the bed as they are detensioned

- Initial camber measurements are often made while still on bed
- Fabricators may lift girder ends before taking camber reading to relieve any drag force at ends

Sliding can cause spalling at the ends of a girder

- Bearing plates help prevent spalling
- Skewed ends on bottom flange should be avoided

4

43

Finishing Girder Ends

Strands burned off

on ends cast into

diaphragm

with short projections

Strands extending from girder after transfer

Strands cut flush & sealed

on ends at expansion joints

Foam recess

Foam recess of form for cutting and patching strands

44

Quality Control

Post-pour inspection

Product tracking

RFID tag

Fabrication Defects and Repairs

PCI Repair Manual (MNL 137-06)

This guide helps provide a uniform assessment and approach to fixing many defects to ensure that responses are measured, appropriate and costeffective for the situation.

Currently being updated

Discussed in later presentation

46

Handling and Transportation

Plant Handling and Storage

- Lift points
- Storage & stacking

Transportation

- Trucking
- Barge
- Rail

47

Lifting and Storage

Lifting loops and other lifting devices

Typical strand loops

Rigid lifting devices

Sling

Shipping Considerations

Increase overhang over supports to improve stability

- Need to consider stresses
- Full f'_c is usually available by time of shipping

Several methods to attach girder to hauling equipment

- Fabricator may request holes through web or flange

52

Shipping Considerations

Shipping route

- Will load be permitted on route?
- Length of girder for curves and obstacles
- Roll stiffness of the hauling system
- Consider superelevation along route
- Access to the site

If questions – discuss with fabricator and/or hauling contractors

Issues related to lateral stability are discussed in later presentation

53

Shipping Record Length Girders NU Girder 65m (210 ft) December 2001

210 ft long single-piece girder - NU 2800 (110 in.)

Launching Beam or Truss

Setting precast beam with launching beam

- Crane lifts girder from truck and sets on dolly on the launching beam
- Truck backs up to push girder across launching beam where it can be picked by crane at other end

58

Launching Beam or Truss

Launching beam on steroids in Oregon

59

Launching Beam or Truss

Placing one end of girder on dolly on launching beam

Truck will back up to push it across launching beam

Launching Beam or Truss

Two cranes lift girder while dollies are repositioned

61

Launching Beam or Truss

Motorized dollies move girder across the launching beams to the next span

Photos are from the late Dr. Keith Kaufman with Knife River PS in OR

62

Launching Beam or Truss

Using load triangle to pass girder between two cranes

65

Summary

Keys to economical prestressed concrete bridges

- Understanding production of girders
- Proper design and detailing
- Local availability of products
- Repetitive use
- Open communications

Contact your local fabricators!

Crane Lifting

Pop quiz!!

Why are they having to use a come-along along to set this girder?

- Girder is being set with a single crane with inclined leads
- Far end of girder is higher, so it is already on the bearing
- Inclined pick on this end creates thrust

67

Prestressed Concrete Bridge Design Seminar

Session 1 – April 13, 2021

2a. Fabrication of Prestressed Concrete Girders

Questions?

